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We present the Latti
e QCD (LQCD) appli
ation CL

2

QCD, whi
h is based on OpenCL and 
an be run on Graphi


Pro
essing Units (GPUs) as well as on 
ommon CPUs. We fo
us on implementation details as well as performan
e

results of sele
ted features. CL

2

QCD has been su

essfully applied in LQCD studies at �nite temperature and density

and is available at http://
ode.
ompeng.uni-frankfurt.de/proje
ts/
lhm
.

Latti
e QCD

• Importan
e Sampling: Generate gauge 
on�gurations {Um} using Boltzmann-weight p[U, φ] = exp {−S
e�

[U, φ]}
with Hybrid-Monte-Carlo (HMC) algorithm [Duane et al., 1987℄.

�Observables:

〈K〉 ≈
1

N

∑

m

K[Um] ;

� E�e
tive a
tion S
e�

proportional to inverse fermion matrix D−1
.

•Most expensive ingredient to 
urrent LQCD simulations: fermion matrix inversion

Dφ = ψ ⇒ φ = D−1 ψ .

� Carried out with Krylov subspa
e methods, e.g. 
onjugate gradient (CG);

�Matrix-ve
tor produ
t Dφ has to be 
arried out multiple times.

• LQCD fun
tions lo
al (depend on a number of nearest neighbours only) ⇒ very well suited for parallelization.

• LQCD operations limited by memory bandwidth. Most expensive part: Derivative part of D, so-
alled

/D.

Numeri
al density ρ =
Number of FLOPs

Number of Bytes to read and write

⇒
�Wilson fermions: ρ( /D) ∼ 0.57

� Staggered fermions: ρ(DKS) ∼ 0.35

⇒ LQCD requires hardware with a high memory-bandwidth to run e�e
tively

⇒ Meaningful measure for e�
ien
y is a
hieved bandwidth

OpenCL and Graphi
 Cards

Chip

Peak SP Peak DP Peak BW

{GFLOPS} {GFLOPS} {GB/s}

AMD Radeon HD 5870 Cypress 2720 544 154

AMD Radeon HD 7970 Tahiti 3789 947 264

AMD FirePro S10000 Tahiti 2×3410 2×850 2×240

NVIDIA GeFor
e GTX 680 Kepler 3090 258 192

NVIDIA Tesla K40 Kepler 4290 1430 288

AMD Opteron 6172 Magny-Cours 202 101 43

Intel Xeon E5-2690 Sandy Bridge EP 371 186 51

Table 1: Theoreti
al peak performan
e of 
urrent GPUs and CPUs. SP and DP denote

single and double pre
ision, respe
tively. BW denotes bandwidth.

LOEWE -CSC

GPU nodes 786

GPUs/node 1 × AMD 5870

CPUs/node 2 × Opteron 6172

SANAM

GPU nodes 304

GPUs/node 2 × AMD S10000

CPUs/node 2 × Xeon E5-2650

Table 2: AMD based 
lusters where CL
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QCD

was used for produ
tion runs.

•Graphi
s Pro
essing Units (GPUs) surpass CPUs in peak performan
e as well as in memory bandwidth (see Table 1);

•GPUs 
an be used for general purposes;

•Many 
omputing 
lusters are a

elerated by GPUs, for example LOEWE -CSC in Frankfurt [Ba
h et al., 2011℄ or

SANAM [Kal
her et al., 2013℄ (see Table 2);

•GPUs 
onstitute inherently parallel ar
hite
ture;

• LQCD appli
ations are always memory-bandwidth limited ⇒ they 
an bene�t from GPUs tremendously;

• In re
ent years the usage of GPUs in LQCD simulations has in
reased, mainly relying on CUDA as 
omputing language,

appli
able to NVIDIA hardware only

1

.

OpenCL Devi
e Compute Unit Pro
essing element Lo
al memory Private memory Work � group Work item

CUDA GPU Multipro
essor S
alar 
ore Shared (per-blo
k) memory Lo
al memory Blo
k Thread

Table 3: OpenCL and CUDA terminology.

•Hardware independent approa
h to GPU appli
ations given by Open Computing Language (OpenCL)

2

.

•OpenCL is an open standard to perform 
al
ulations on heterogeneous 
omputing platforms ⇒ GPUs and CPUs 
an

be used together within the same framework, taking advantage of their synergy and resulting in a high portability of

the software. First attempts to do this in LQCD in [Philipsen et al., 2011℄.

• See Table 3 for a 
omparison of CUDA and OpenCL terminology.

Figure 1: OpenCL 
on
ept

•An OpenCL appli
ation 
onsists of a host program 
oordinat-

ing the exe
ution of the a
tual fun
tions, 
alled kernels, on


omputing devi
es (Figure 1). A devi
e 
an for instan
e be a

GPU or a CPU.

•Although the hardware has di�erent 
hara
teristi
s, GPU pro-

gramming shares many similarities with parallel programming

of CPUs. A 
omputing devi
e 
onsists of multiple 
ompute

units. When a kernel is exe
uted on a 
omputing devi
e, a
tu-

ally a huge number of kernel instan
es is laun
hed. They are

mapped onto work-groups 
onsisting of work-items. The work-

items are guaranteed to be exe
uted 
on
urrently only on the

pro
essing elements of the 
ompute unit (and share pro
essor

resour
es on the devi
e).

• Compared to the main memory of traditional 
omputing systems, on-board memory 
apa
ities of GPUs are low, though

in
reasing more and more

3

. This 
onstitutes a 
lear boundary for simulation setups. Also, 
ommuni
ation between

host system and GPU is slow, limiting workarounds in 
ase the available GPU memory is ex
eeded. Nevertheless, as

�nite T studies are usually 
arried out on moderate latti
e sizes (in parti
ular Nσ ≫ Nτ ), this is less problemati
 for

the use 
ases CL

2

QCD was developed for.

1

See https://developer.nvidia.
om/
uda-zone and the QUDA library: https://github.
om/latti
e/quda .

2

See https://www.khronos.org/open
l .

3

For instan
e, the GPUs given in Table 2 have on-board memory 
apa
ities of 1 GB and 3 GB, respe
tively.

CL
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QCD Features

• First OpenCL appli
ation for Wilson fermions [Ba
h et al., 2013℄, fo
using on Twisted Mass Wilson fermions

[Frezzotti and Rossi, 2004; Shindler, 2008℄ (automati
 O(a) improvement at maximal twist);

• Staggered fermions in standard formulation;

• Improved gauge a
tions;

• Standard inversion and integration algorithms;

• ILDG-
ompatible IO

4

;

•RANLUX Pseudo-Random Number Generator (PRNG)

5

[Lüs
her, 1994℄.

Exe
utables:

•HMC: Generation of gauge �eld 
on�gurations for Nf = 2 (Twisted Mass) Wilson type fermions using the HMC

algorithm [Duane et al., 1987℄;

•RHMC: Generation of gauge �eld 
on�gurations for staggered type fermions using the Rational HMC algorithm

[Clark and Kennedy, 2007℄;

• SU3HEATBATH: Generation of gauge �eld 
on�gurations for SU(3) Pure Gauge Theory using the heatbath

algorithm [Cabibbo and Marinari, 1982; Creutz, 1980; Kennedy and Pendleton, 1985℄;

• INVERTER: Measurements of fermioni
 observables on given gauge �eld 
on�gurations;

•GAUGEOBSERVABLES: Measurements of gauge observables on given gauge �eld 
on�gurations.

4

Via LIME, see http://usq
d.jlab.org/usq
d-do
s/
-lime .

5

See https://bitbu
ket.org/ivarun/ranlux
l .

CL
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QCD Code Stru
ture

•Host program of CL

2

QCD set up in C++ ⇒ allows for independent program parts using C++ fun
tionalities and

naturally provides extension 
apabilities.

•Cross-platform 
ompilation provided using CMake framework

6

.

•The 
ode stru
ture of CL2QCD is displayed in Figure 2. Two main 
omponents:

� The physi
s pa
kage, representing high-level fun
tionality;

� The hardware pa
kage, representing low-level fun
tionality.

The meta pa
kage 
olle
ts what is needed to 
ontrol the program exe
ution and IO operations.

•All parts of the simulation 
ode are 
arried out using OpenCL kernels in double pre
ision.

•OpenCL kernels sour
e �les:

� Contain 
on
rete implementations of basi
 LQCD fun
tionality like matrix-matrix multipli
ation, but also more


omplex operations like the

/D or the (R)HMC for
e 
al
ulation;

�OpenCL language based on C99;

� Compilation and exe
ution is handled within the hardware pa
kage;

�Kernels in a 
ertain way deta
hed from host part (host 
an 
ontinue independently of kernel exe
ution status)

⇒ Clear separation into administrative part (host) and performan
e-
riti
al 
al
ulations (kernels).

6

See http://www.
make.org .
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Algorithms

Implementation of algorithms using

Lattices and Fermionmatrix objects

• HMC

• RHMC

• HEATBATH

• SOLVER

• INTEGRATOR

• METROPOLIS

Lattices

Representations of lattice fields

Operations on fields

• GAUGEFIELD

• FERMIONFIELD

• GAUGEMOMENTA

Fermionmatrix

Matrix operations on fermion fields

• WILSON

• TWISTED MASS

• STAGGERED

Observables

• GAUGEOBSERVABLES

• 〈ψ̄ψ〉

• CORRELATORS

PRNG

• RANLUX

Noise Sources

• POINT • Z2

• GAUSSIAN • Z4

H
A
R
D
W

A
R
E

Buffers

Representation of OpenCL buffer

Device-dependent: AOS or SOA

• SU3

• SU3VEC

• SPINOR

• GAUGEMOMENTA

• · · ·

Code

Execution of specific OpenCL kernels

Meta information about kernels

• SPINOR ALGEBRA

• FERMIONS

• MOLECULAR DYNAMICS

• GAUGEFIELD

• · · ·

OpenCL Compiler

Compilation of OpenCL kernels
Reread functionality

Device

Represenation of specific device

Provides Code modules

System

Repr. of current architecture
Provides available OpenCL devices

OpenCL Kernels

Code for execution on device

Compiled at runtime

• PLAQUETTE

• SAXPY

• DSLASH

• GAMMA5

• · · ·

Figure 2: CL
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QCD 
ode stru
ture (illustrative). Pa
kages and substru
tures are realized as namespa
es.

•The physi
s pa
kage provides representations of the physi
al obje
ts like gauge �elds or fermion �elds. In addition,

the 
orresponding 
lasses provide fun
tionality to operate on the respe
tive �eld type. Moreover, algebrai
 operations

like saxpy are provided. Similarly, the various fermion matri
es are provided. This allows for the implementation of

high-level fun
tionality without knowing details of the underlying OpenCL stru
ture. For example, the (R)HMC or

the 
al
ulation of observables are 
ompletely independent of system or kernel spe
i�
s. In other words, the physi
s

pa
kage works as an interfa
e between algorithmi
 logi
 and the a
tual OpenCL implementation.

• In turn, the hardware pa
kage is destined to handle the 
ompilation and exe
ution of the OpenCL kernels. The

hardware::System 
lass represents the ar
hite
ture available at runtime. The latter 
an provide multiple 
om-

puting devi
es (i.e. CPUs and/or GPUs), whi
h are represented by hardware::Devi
e obje
ts and initialized

based on runtime parameters. Kernels are organized topi
-wise within the hardware::
ode namespa
e, e.g. in

the hardware::
ode::Fermions 
lass. These 
lasses take over the 
alling logi
 of the kernels and provide meta

informations like the number of FLOPs a spe
i�
 kernels performs. The hardware::Devi
e 
lass has ea
h of the

hardware::
ode 
lasses as singleton obje
ts, i.e. they are initialized the �rst time they are needed. During this

pro
ess, the OpenCL kernels are 
ompiled.

•Memory management is performed by the hardware::buffers 
lasses, whi
h also ensure that memory obje
ts are

treated in a Stru
ture of arrays (SOA) fashion on GPUs, whi
h on these is 
ru
ial for optimal memory a

ess as

opposed to Array of stru
tures (AOS).

•OpenCL kernels are 
ompiled at runtime using the OpenCL 
ompiler 
lass. In OpenCL, this is mandatory as the

spe
i�
 ar
hite
ture is not known a priori. On the one hand, this introdu
es an overhead, but on the other hand

allows to pass runtime parameters (like the latti
e size) as 
ompile time parameters to the kernels, saving arguments

and enabling 
ompiler optimization for spe
i�
 parameter sets. In addition, the 
ompiled kernel 
ode is saved for

later reuse, e.g. when resuming an HMC 
hain with the same parameters on the same ar
hite
ture. This redu
es

the initialization time. Kernel 
ode is 
ommon to GPUs and CPUs, devi
e spe
i�
s are in
orporated using ma
ros.


